位置:编程技术网 > 运维管理 > 正文 >

人工智能+医学影像:是陷阱还是金矿?

2019年04月25日 23:14来源:未知手机版

中国最美小城,密传,全国道德模范,临邑县人民政府,生物谷,qq查询系统,战火英雄速升版,破釜沉舟的主人公

AI医疗行业还在科研阶段,离真正落地应用还有距离。跑得快的企业已经抢占了不少资源,但并非高枕无忧。

作者:夏天

除了常见的人脸识别、语音识别等技术,如今,人工智能技术在医学领域也大放异彩。

其中,医学影像与人工智能的结合被认为是最有发展前景的领域之一。医学影像智能诊断、语音电子病历、癌症智能诊断等均已逐渐成为热门方向。人工智能+医学影像是其中最热门的概念之一。

由于人工智能在医学影像领域市场潜力巨大,吸引了各大资本巨头纷纷进场,但让人不得不反思:人工智能+医学影像到底是陷阱,还是有待挖掘的金矿?

人工智能为医学影像“添翼”

目前,人工智能在国内医疗领域的应用主要以医学影像为主。那什么是医学影像呢?

医学影像是指为了医疗或医学研究,对人体或人体某部分,以非侵入方式取得内部组织影像的技术与处理过程。

国内近两年AI研究如火如荼,各个器官疾病诊断的模型都有研究和尝试,基于深度学习的AI应用目前已经覆盖病灶检测、病理诊断、放疗规划和术后预测等各临床阶段。其中基于X线的肺部筛查、乳腺钼靶筛查;基于CT影像的肺结节检测模型显示出较好的临床使用潜力。

正如大家所了解的,疾病的病理过程会产生一定的病理解剖和病理生理方面的变化,这些病理变化在不同的影像学检查中会产生不同的影像学信息(X线和CT是利用人体组织间的密度差异,MRI是利用组织间的MR信号强度差异,US是利用组织间的声学信息差异),通过对这些信息的分析,医生能够实现对机体病变的有效把握,从而为患者做出正确的诊断。

但是,大多数人不知道的是,我们生病去医院做完检查后手里拿到的诊断报告是放射科医生写出来的。其实,放射科医生的工作除了发现病变、定性定位病变、看图象做诊断,还要参与到治疗方案的制定中去。

据GPLP犀牛财经了解,一名放射科医生每天要诊断超过60个病人的CT,有时甚至上百个,一个病人的医疗影像有250-300张,而医生往往要对一个病人的影像反复看3-4遍。这就意味着,在每个病人身上,医生都要看上千次图,这名医生一天下来就要看几万甚至上十万张图,这对视力是非常大的伤害,并且长时间的疲劳作业还会增加漏诊的风险。

有了人工智能辅助医学影像,不仅能帮助患者更快速地完成健康检查( 包括X 线、超声、磁共振成像等) ,也可以帮助影像医生提升读片效率,降低误诊概率,并通过提示可能的副作用来辅助诊断。

而影像是大病诊断的切入点——X光片、CT所呈现的医疗影像帮助人类尽早发现身体疾病,进行科学的治疗,恢复健康甚至挽留住生命。

通过借助深度学习、图像识别等人工智能技术,医疗影像的诊断可以变得更加高效和准确,以免误诊和漏诊。

资本涌入,巨头布局,这些公司“不差钱”

随着人工智能技术的不断发展,其在医疗领域中的应用也逐渐增多。目前,人工智能+医疗共有包括虚拟助理、医学影像、辅助诊疗等八大应用场景,其中,医学影像是最为热门的应用场景之一。

越来越多的人也将目光瞄准了人工智能医学影像领域,随着资本的竟相涌入,人工智能医学影像这块“蛋糕”也被做大。

但是,中国医疗市场巨大,不是一、两家公司就可以吃得下的。

根据Global Market Insight的数据报告,按照应用划分,药物研发在全球医疗AI市场中的份额最大,占比达到35%。而智能医学影像市场则为第二大细分市场,并将以超过40%的增速发展,在2024年达到25亿美元规模,占比25%。

据GPLP犀牛财经了解,国内有83 家企业将人工智能应用于医疗领域,主要布局在医学影像、病历/文献分析和虚拟助手三个应用场景,而其中涉足医学影像类的企业数量达到40 家。

本文地址:http://www.reviewcode.cn/yunweiguanli/45957.html 转载请注明出处!

今日热点资讯