位置:编程技术网 > 运维管理 > 正文 >

AI算力新地基能否解困算不起、算不动?

2021年03月29日 15:33来源:未知手机版

全美最孤独的公路,nasha,二手qq汽车

本文来源:懂懂笔记

说到科技,我们首先会联想到的就是5G、大数据、万物互联和人工智能等热词。不可否认的是,人工智能是这些新兴信息技术中的“当红炸子鸡”,更是未来产业、社会甚至国力发展的“底气”所在。

值得欣喜的是,国内人工智能领域近年来取得了不少新的突破和成绩,在近期有关部门发布的《2020人工智能中国专利技术分析报告》中可以看到,截至2020年10月,中国人工智能专利申请量累计已达69.4万余件,同比增长56.3 %;IDC相关调研报告中,对2020年全球各国AI计算的发展水平统计后发现,中国人工智能服务器占全球市场三分之一左右,成为全球人工智能产业发展的中坚力量;而全球知名AI计算基准评测组织MLPerf在去年底也公布了一份“2020年推理测试榜单”,中国科技企业的产品创造了18项全球性能纪录


>

1.如何解决AI算力匮乏与成本高企的矛盾?

2.能否打造类似水电供给的AI算力基础设施?

3.如何协同行业在AI应用落地过程中迎接“产业AI化”大潮?

破局,无疑要从满足行业需求以及夯实发展基础做起。

爆发的需求和“暴涨”的压力


>

但是,太多问题也随之而来:简单点儿说就是各行各业对AI需求的“胃口”越来越大,但是AI能力的供给匮乏,而成本却在“暴涨”。这正是AI在供需层面的痛点与矛盾。

关于需求的变化有两点值得注意:一方面是量的增长,另一方面是质的变化。

IDC在2020年6月至8月期间,针对中国企业人工智能应用需求开展了一项专题调查和研究。调研发现,企业对于人工智能带来的价值有了更深的认知,企业在人工智能应用上正在采取更多积极的举措。


>

数据显示有超过九成的企业正在使用或计划在未来三年内使用人工智能,其中,大部分企业采用了公有云、私有云加本地部署的混合架构来部署人工智能应用,而74.5%的企业期望在未来可以采用具备公用设施意义的人工智能新型基础设施。请注意:这一期望也是不同地区和不同规模的企业的共识。

除了量的变化,AI算力方面的质变则更令人关注。

提到质变,首先要谈一下AI模型。这其中,最具代表性的就是打败李世石的Alpha GO,以及OpenAI实验室去年推出的GPT3。前者因为在围棋方面所展现的天赋尽人皆知,而后者则是在去年发布后就引发了AI科学领域的震荡。

其实众多AI模型的不断出现,终极目标就是具备更高“等级”的智能。而每一次模型智能程度的提升,都使得模型也愈加复杂,模型尺寸也呈现爆发式增长。这里打一个不是很恰当的比喻,如果我们将施瓦辛格主演的《终结者》里面的天网,视为AI所能达到的的最高境界,那么2012开始出现的AlexNet网络模型,以及此后几年的ResNet、Transformer、BERT直至GPT-3等优秀AI模型,就是在向天网这样的终极目标迈进。


>

显然,越先进的大规模AI模型越需要耗费大量的计算资源,如果没有强劲的算力支撑,训练一个先进的模型所耗费的时间和金钱成本——绝对是很多人无法想象的。

本文地址:http://www.reviewcode.cn/yunweiguanli/202952.html 转载请注明出处!

今日热点资讯