位置:编程技术网 > 云计算 > 正文 >

数据量爆棚难以负荷,Kyligence利用人工智能打造新一代数据分析平台

2019年01月12日 00:24来源:未知手机版

hold不住的爱,功夫少女闯校园,梦见自己喜欢的明星,皓顺壹号院,北京二手别墅,猕猴桃种植

原标题:数据量爆棚难以负荷,Kyligence利用人工智能打造新一代数据分析平台

成立Kyligence之前,韩卿曾任eBay全球分析基础架构部大数据产品负责人、Actuate中国首席顾问等职。

同时,他也是首个来自国内的Apache软件基金会顶级项目VP,首个来自中国的Apache顶级开源项目,Apache Kylin的创建者及项目委员会主席(PMC Chair),负责Kylin的战略规划、发展路线图及产品设计等,并致力于发展 Apache Kylin 全球社区,构建生态系统及推广等。

(Kyligence创始人韩卿)

凭借着在大数据、数据仓库、商业智能、数据分析等领域拥有丰富的经验,韩卿发现Kylin项目在商业领域的需求非常大,有着很多外部需求,这些需求远远超过他们当时团队的工作职责。

另一方面,成功的开源项目背后都有一个好的创业公司,只有这样才可以更健康地发展社区,更好地促进生态建设,让更多客户去使用开源项目。

“我们希望在整个大数据行业里面,有一家专门做底层技术的创业公司能够在行业内做些突破,做点不一样的事情。这些是我们创立Kyligence的初衷。”

于是韩卿带领Kylin核心团队,于2016年3月在上海成立了Kyligence公司。Kyligence是一家专注大数据分析的创新型公司,可以为企业提供基于Apache Kylin的下一代企业级数据仓库及商务智能大数据分析平台和解决方案。

-1 -

数据量爆棚的时代

传统数据仓库需要变革

韩卿告诉i黑马&数字观察,1990年前后,数据仓库技术理论被提出,这个理论认为应该把企业各个分散的业务数据整合起来,构建一个统一的数据仓库,为企业分析和应用分析提供一个统一的平台,企业能够在这个平台上构建整个分析应用。

目前,这项技术已经变成了绝大部分行业客户的基础技术,像金融、运营商、零售等行业的业务分析都已经构建在这样的基础技术之上了。以金融行业为例,银行要进行各种各样的分析,尤其是风控分析,都需要建立在对不同业务模块数据的统一分析之上。

不过,2006年后开始,云计算的蓬勃发展,各个领域的企业都纷纷开始上云,由此很多的数据不断地大量涌现,这时候企业如果在云上建一个分析仓库,就要面临各种挑战。

首先,数据体量变得越来越大,呈现越来越多样性和复杂性的特质。但传统的数据仓库与应用系统是分开的,用户做分析做工程时,基本上是从每块业务数据那里直接把数据拿过来进行分析就行了。这样操作的问题在于,要把这么多不同的业务数据整合到一起是一个巨大的挑战。

其次,存储的成本和性能上,原有的数据仓库技术已经不能满足企业快速增长的业务需求。“传统的建模方式,是需要通过漫长的数据转换过程,把转换后的数据放到数据仓库里,最后基于这样的仓库,企业还要建非常多的分析模型、报表、预测,通常这样的项目要耗费大量人力,花费好几个月的时间,甚至是用年来计算的。”

第三,虽然业界推出了依靠更加专业的数据科学家来解决问题的解决方案,但本质上还是在依赖大量的人工进行工作,如果没有革新性的变化的话,人力是不会被解放出来的,那这个行业也不会发生根本性的改变。

“未来的数据分析也应该是融合的,不需要关心这个数据的来源,而将更多的精力放在关注数据所带来的业务决策上,这就是Kyligence正在不断优化和创新的融合、智能数据仓库。”

(15倍性能提升的同时节省50%空间)

Kyligence做的事情是基于Apache Kylin,为企业客户提供下一代企业级数据仓库及商务智能大数据分析平台和解决方案,从私有部署到云计算平台,都能使用户在超大规模数据集上获得极速的洞察能力,以释放数据价值,驱动业务增长。

本文地址:http://www.reviewcode.cn/yunjisuan/24390.html 转载请注明出处!

今日热点资讯