位置:编程技术网 > 游戏开发 > 正文 >

AI产业人才困境与落地限制要用技术开启AI to B的产业位移

2020年09月11日 10:46来源:未知手机版

吕布戏貂蝉,汪峰章子怡牵手照片,mg动画

这一天是诺兰新片《信条》上线的第一个周末,大家从影院走出来,似乎都不会好好说话了,纷纷在朋友圈打出:!刷二要定一,了脑烧太

太烧脑了 同样的心声也回荡在北京市西北部的一个会场内,百度黄埔学院的80多位学员,正在经历一场可能比本科毕业答辩更具挑战性的考验。

一间会议室内坐着几位表情认真的评审,很多都是百度的杰出架构师和科学家,环绕他们而坐的是十几位来自各个产业、各种年龄的学员们,大家集体凝神聆听着正在答辩的同学用PPT陈述自己的毕业课题。

这些课题都是他们从产业中带来的具体问题与困惑,经过了三个月的课程、讨论、实践,最终呈现出相应的AI技术解决方案,为每周的艰苦课程画上一个不负韶华的句点。

可能他们没能第一时间看最新的电影、玩最热的梗,却在这个特殊的2020,成为站在产业智能化落地的 时间奇点 上的弄潮儿。

教科书长不出AI,产业智能化的人才困境

时间奇点 这个词听起来很酷,但AI落地产业的过程却一点都不酷,并不像大众猜想的那样充满了赛博朋克式科幻色彩。这一点,黄埔学院第三期的学员们感受十分深刻。

他们大多来自传统行业,有人有十多年的IT工程师经验,有人对AI有通识性的了解,但AI到底能帮助自己的企业和业务解决哪些难题,怎样去解决,解决到什么程度,却没有一堂公开课或是哪篇科普文章能够告诉他们答案。

某种程度上,这也反映了AI落地的现实难题:

首先,实践案例较少,业内交流不充沛,不仅传统中小企业对 学习 的需求是迫切甚至饥渴的,许多大型国企的CTO或技术负责人也渴望在智能化转型得到务实和细致的指导。但在实际中,绝大多数企业只能从集成商或平台方购买整个系统或通用算法,能力上的雷同会在落地具体场景时遭遇 水土不服 。

其次,平台和工具散落,技术体系庞杂,各种公开课、干货文章和沙龙分享等都比较粗略且碎片化,开发者学习成本高,进而导致AI项目推进效率低;

而相比金光闪闪的学术大牛,产业智能化落地阶段对能力的要求,是能将需求转化为问题、进而找到最高性价比解法的工程型人才。早在6月份,英伟达工程师Chip Huyen就曾针对机器学习岗位裁员潮给出了自己的结论,那就是拥有工程相关的知识背景后,再去接触机器学习,会比直接接触机器学习更有前景。那么,如何让这些具备工程能力的人开始与机器学习握手呢?

答案或许可能是,一套体系化、结构化、定制化的课程,一种能够保证学习效果和实战输出的教育机制,当然,创造一个良好的环境来达成大量(潜在)从业者之间的互动,对前沿案例的分析、探讨,也是必不可少的。

而这些,正是百度黄埔学院已经做了三期的事。

三个月时间魔咒,81位产业人才的技术求道

12堂课程,每次三小时的高强度输入,三次专家指导(实际上有专家为学员提供了12次之多的辅导),线下同学会、行业聚会等等,这些都是百度黄埔学院第三期学员在三个月的时间里所收获的。

其中百度所调动的支持资源也是有目共睹的。无论是主任架构师、科学家的倾情指导,还是专家与助教无微不至的辅助答疑,都被无私地倾洒在这批未来的 首席AI架构师 身上。

为什么要做这件事?为什么黄埔学院的资源在不断加码?

一位第三期课程的班主任告诉我,黄埔学院从第一期到第三期,学员群体开始发生变化,传统企业技术人员的比例开始大幅增加。而这些学员和企业对于AI的落地需求又有不同,到底哪些是AI能做,哪些是不能做的,局限性在哪里,数据到底怎样用?都需要有专业人士去帮助梳理、普及,并指导实战。

因此,从第一期到第三期,黄埔学院也逐渐摸索出了一条更为清晰的路径。

既然许多传统企业不了解AI的边界、不清楚AI能做什么该做什么,那就纠集百度自身的科学家和 高工 ,给他们手把手指导。有学员分享到,在第一次专家指导的时候,学员认为自己要做的事情很简单,实际上技术实现却很复杂,而百度高工导师们则会给他们梳理清楚,他的业务问题能够用什么技术方法去解决,大致的技术思路和可行性如何,如果遇到问题可以求助于谁。这样的指导十分费时费力,事实上,黄埔学院第三期课程所调动的内部师资规模也是前所未有的。

本文地址:http://www.reviewcode.cn/youxikaifa/171557.html 转载请注明出处!

今日热点资讯