位置:编程技术网 > 物联网 > 正文 >

第三波人工智能潮 跟以前有何不同(2)

2019年06月26日 03:27来源:未知手机版

少儿围棋教程,个性文章,新疆论坛

前两次AI的繁荣具有两个特点:一是从参与者来看,主要政府投资主导,企业参与度低,落地应用极为有限;二是技术上均是以逻辑推理为核心的符号主义占据了主导地位,神经网络学派的发展长期被压抑,客观上,神经网络所需要的数据量和算力条件当时也不成熟,AI的主要形式也因此表现为确定的推理,难以处理现实中遇到的大量不确定性问题。

当下处在第三波人工智能浪潮之上

互联网30年的快速发展,社交网络、物联网和云计算所产生的海量数据为本轮人工智能的繁荣提供了燃料。摩尔定律驱动算力在过去30年提升了百万倍,为数据驱动的人工智能提供了强劲的动力。2006年,加拿大科学家杰弗里·辛顿(GeoffreyHinton)教授等人一年之内连发三篇重量级论文,标志着深度学习时代的开启。自2016年AlphaGo引爆了媒体以来,AI得到整个社会的关注。

与前两次人工智能浪潮不同,很多和业务紧密结合的AI应用场景已经或正在落地,企业成为了最主要的推动者。技术上,深度学习作为机器学习的一种,放弃了之前符号主义的机械推理,而采用了基于概率的范式,使得应用场景得以大幅度地拓展。符号主义则以知识图谱的形式延续下来,成为新一代搜索引擎的核心技术。

同时,繁荣之下的局限也是显而易见的。首先,深度学习技术上缺乏理论的支撑,目前是模型的结构和训练是经验主义主导,未来深度学习理论的诞生将能减少算法对算力和数据的依赖;其次缺乏突破性的算法思想。深度学习中大红大紫的卷积神经网络(CNN)和长短时记忆网络(LSTM)都是在上世纪八九十年代就被提出了的,只是囿于当时数据量和算力,才没有流行。本轮人工智能繁荣中真正令人眼前一亮的创新点乏善可陈,对抗神经网络(GAN)引入博弈论的思想、AlphaGo强化学习结合深度学习、自然语言处理中的词向量等技术可以算是为数不多的重要创新。

经典力学和量子力学的发展过程与今天的深度学习近似:第谷收集了大量行星运动数据,他的助手开普勒在这些数据中发现了行星运动三大定律,但未能指出背后的原理,直到牛顿在三大定律基础上提出万有引力定律;在量子力学领域,人们很早就获得了氢原子的光谱数据,但是无法解释。今天,我们拥有大数据,也有一些不错的深度学习模型,但是还缺乏理论的支撑。

本轮人工智能主要算法的灵感来源于认知科学、博弈论和量子力学等广阔的领域,大数据驱动的算法主导的科学研究范式(第四范式)被应用于各个学科的研究,他山之石可以攻玉,其他学科的进展也能反哺人工智能的创新,并可能起到至关重要的革命性作用,特别是脑科学、心理学等学科发展可能与AI的发展形成闭环和相互促进的良性关系。

在工业界,除了金融、零售等少数数据条件好而且“离钱近”的行业,传统行业在数字化转型过程中,面临数据采集、数据治理和缺乏人才等一系列挑战、直接利用人工智能变现具有一定难度。换个角度看,这些行业也具有极大的潜力,可以先从一些简单的“速赢”场景切入,逐步培育数据文化和人才,先对已有业务进行优化。

本轮人工智能的上半场在C端衣食住行方面都已普及,接下来的主战场将在B端,企业不要总是想着风口,踏踏实实地将一个个AI场景落地才是王道。整个社会各行业的数字化转型将持续数十年,即便学术界在未来十年在AI理论上没有大的突破,对于行业的AI场景落地并不会产生太大的瓶颈效应,大部分企业AI场景并非一定要使用最酷炫的技术,合适的技术才是最好的。

根据Gartner的估计,未来企业对于预测算法的需求将指数增长,其中大部分场景并不需要追求极致的预测准确率,使用目前流行的框架和工具,普通程序员和商业分析师就能满足大部分这类需求,对于少数核心场景,例如金融行业的风控,零售行业商品推荐,1%的准确率的提升都会带来巨大的价值,企业自然会在这些领域不遗余力地进行投入,数据科学家未来的用武之地也将转移到这些领域。

本文地址:http://www.reviewcode.cn/wulianwang/53334.html 转载请注明出处!

今日热点资讯