位置:编程技术网 > 数据库 > 正文 >

AI会让谁失业?(2)

2019年06月27日 09:34来源:未知手机版

奇热影视,三亚最新楼盘,200万港元

(图源:吴军老师的《数学之美》)

这是划时代的一幕。究其原因,说来也简单,Google有两个武器:做搜索引擎积累下的海量语言数据库,以及互联网大公司才有的分布式计算能力。前者让统计机器翻译的数据更全面,后者让模型可以变得非常庞大复杂。

此后,机器翻译就走上了统计之路。在2016年,Google发布了基于神经网络的更强大的翻译系统,始终是机器翻译的领军角色。直到现在,各位手里用到的机器翻译工具,也全部都是基于统计原理设计的。

想必说到这里,绝大多数AI的原理也就容易理解了。它们全都是出色的鹦鹉,在模仿学习人处理事物的行为,做出准确的复现或者预测。

2. 现在的AI做不好什么

绝大多数AI都是基于统计的,训练出一个“出色的鹦鹉”,是要靠反复的、海量的输入。AlphaGo要输入无数的棋谱,AlphaStar要输入无数的游戏录像。

当然,现在的机器学习尤其深度学习,已经能够让鹦鹉变得略聪明一些,不只是学舌,还知道总结部分方法和规律,来验证新的内容。像人脸识别系统,就可以对一张全新的脸,做有效的识别模型。但它依然不知道本质的原理,这也是基于统计似乎很难走到的终点。

在这样的背景下,输入的数据是影响AI质量最重要的点。最优秀的AI大都在互联网公司和政府手里,他们拥有最全面的数据输入;而不是研究规则和理论为主的学界。

这样看,AI存在的瓶颈有这样几种。

首先,输入不足的事物AI就很难预测。

有的事情属于迭代太慢。

像美国总统大选,每4年才举行一次,每次的影响因素又太多,拿到的“训练集”实在太少,就根本无法预测。

还有的事情是输入几乎不可能完备,或者以现今技术根本做不到。

像“女朋友生气了到底是为什么”就是输入几乎不可能完备的预测。因为人的心理变化涉及的因素太多,有可能就是女朋友看到朋友圈你为别人点了个赞,又联想到了上次你没有给她买生日礼物,再想到你给前任买的礼物特别贵… …衍生出一系列的结果,你压根都无从推理。在这种缺乏输入的判断上,人和机器一样无能。

其次,AI只能学会教给它的东西,不会学习新的,除非你再教给它。

比如,之前特斯拉的无人驾驶系统出了误判,就是把卡车上的蓝白色车身当做了蓝天白云。人工智能没有结合周边更多显而易见的场景来推测这是个卡车——因为系统里没有这些输入。总之,看到车身颜色就按照统计概率看认为是蓝天白云,才做出了误判。

再比如,哪怕是再强大的机器翻译器,在遇到新词汇和压根没有在网上出现的词汇时就完全无能为力。“坑爹”这样曾经的网络热词,假如没有一个网友曾经准确在网上翻译给外国友人过,那这个词翻译器就永远不会翻译,它没有能力根据上下文去猜测。

最后,没有评测体系的预测,AI也无法胜任。

机器学习的AI都要有一个对量化标准的追求,以建立预测结果跟标准之间的关系来训练模型。

比如,当我们输入一堆音乐,来让AI学习后,AI谱出的曲子一定是参差不齐的。要么我们就在输入好的音乐后,还要输入坏的音乐,并且告诉AI好和坏的程度;要么我们就在AI谱出曲子之后,反复给它的曲子打分。AlphaGo就是在AI互相对战反复确认胜负后,才能快速成长的。

在一些特殊的领域,像涉及到文艺创作的、有价值观差异的许多无法明辨好坏的事物,就很难让AI做好预测。比如用AI去判定一个人是好人还是坏人,由于不存在评价好坏的绝对标准,那AI就无法完成。

目前的AI,只能基于“已知”做预测,不能创造未来。都需要已知的数据、已知的结论、已知的课题。从人类借用AI的预测做决策,到人类完全信任AI直接做决策,还有巨大的鸿沟要跨越。

本文地址:http://www.reviewcode.cn/shujuku/53454.html 转载请注明出处!

今日热点资讯