位置:编程技术网 > 数据库 > 正文 >

AI会让谁失业?

2019年06月27日 09:34来源:未知手机版

奇热影视,三亚最新楼盘,200万港元

欢迎关注“创事记”微信订阅号:sinachuangshiji

文/刘飞

来源:刘言飞语(ID:liufeinotes)

最近在读《AI极简经济学》,除了翻译得读着很痛苦,确实是本好书。国内的翻译作品给译者的报酬实在是太低了,也难保出现大量的谷歌翻译式的作品。

这本书核心解释了一件事情:人工智能的预测,与经济学之间的关系。因为当人工智能的预测效果与成本都足够可控,那很快就会进入寻常百姓家、渗透进我们的衣食住行。

读的过程中我在即刻发了一个消息:

不少朋友留言表示比较疑惑,到底什么算替代品、什么算互补品?到底哪些会被取代?哪些比较安全?确实怪我直接引用了本就翻译略差的原文。

我过去也跟AI算是有一些接触。我读研的实验室是哈工大信息检索实验室(已改名哈工大社会计算与信息检索研究中心),做过一些机器翻译和机器学习的项目,身边的同学毕业也大都去做算法研究或算法工程了。

所以今天就基于这个问题,结合我过去的经验,跟你分享下我的想法。

1. 常见的AI都是如何运转的

现阶段大部分优异的人工智能,都是绝佳的模仿者,而非思考者。从AlphaGo,到AlphaStar,都是学习了无数人类的操作才变得这么厉害的,而人类为什么要如此操作,它们全然不知。

(AlphaStar被质疑赢过职业选手全靠手速。)

要解释AI的运转逻辑,机器翻译就是很典型的课题。

早在计算机出现之前,就有苏联科学家提出了基础的构想,在ENIAC之后,IBM为首的企业也参与进机器翻译的研究中。不少学者都期待,能够出现一个像科幻片里那种实时翻译器一样的工具,全球各族人民肯定能够更加团结,这必然是划时代的发明。

翻译这件事,乍一看好像没有太难。一个事物,在绝大多数语言中,都有对应的词汇,“妈妈”对应“mother”,“桌子”对应“desk”,可以建立对应关系;语言学也有了成熟的体系,语言的语法规则特点做拆解后,变成有效的算法策略,岂不应该是水到渠成的吗。

可是事与愿违,机器翻译却直到20年前才算有长足的进步。为什么呢?

因为基于规则的机器翻译太难了,同一个词语,在不同的情景下,含义全然不同。

比如:

大量的俚语和用词习惯都是在人类实际使用语言的过程中毫无规律地出现的,用规则方式解读,几乎没有可能。

无数语言学家和计算机科学家探索了几十年,都没有做出一个哪怕看起来勉强可用的翻译器。

而在规则机器翻译流派之外,49年就有科学家提出了统计机器翻译的理念,认为是否可以用“猜”的方式去做翻译。也就是说,机器不关心“意思”到底是什么含义,而是看“不好意思”和“是我不好意思”同时出现的时候,大概率会对应哪个英文短语。

可以想象机器是一个学舌的鹦鹉,左边站着一个中国人,右边站着一个美国人,他们每次说同样含义的话。鹦鹉就会疯狂学习和记忆他们的说话内容,等到再有第三个人来跟它讲话,它就把记忆中最高频的同时出现的句子或者短语讲出来就好了。

这个方法在早期没有特别受重视,因为效果跟规则机器翻译比也好不到哪去。机器翻译的发展,一直在基于规则的路上,每年提升零点几个点的速度前进。

2005年,机器翻译突然有匹黑马出现。NIST的年度机器翻译评测里,Google一跃成为冠军,而且比第二名要超出5%,引起了轰动。

本文地址:http://www.reviewcode.cn/shujuku/53454.html 转载请注明出处!

今日热点资讯