位置:编程技术网 > 架构设计 > 正文 >

人工智能会成为优秀的天气预报员吗?听专家怎么说

2019年02月11日 07:40来源:未知手机版

汉堡包的单词,冰雪勇士下载,最新笔记本显卡排行,男子机场脱鞋睡觉,汤淼 周苏红,拉萨的天空

近日,一则人工智能或能提前一周预测台风的消息引发关注。报道称,日本海洋研究机构和九州大学的研究小组利用人工智能深度学习技术,开发了从全球云系统分辨率模型(NICAM)气候实验数据中高精度识别热带低气压征兆云的方法。该方法可识别出夏季西北太平洋热带低气压发生一周前的征兆。

不看不知道,原来人工智能在天气预报方面已经开始发威。它会比人类预报得更准吗?记者为此采访了中央气象台专家,试图理解气象预报的AI助手究竟表现如何。

AI已成天气预报研究热门

根据相关报道,研究小组具体的做法是首先利用热带低气压跟踪算法,将全球云系统分辨率模型20年积累的气候实验数据,制成5万张热带低气压初始云及演变中的热带低气压云图片,再加上100万张未演变成热带低气压的低气压云图片,共105万张图片组成10组学习数据,利用深度卷积神经网络的机器学习,生成不同特征的10种识别器,然后构筑出可对10种识别器结果进行综合评价的集合识别器。

对此,中央气象台台风与海洋气象预报中心副主任钱奇峰表示,相关报道只介绍了做法,并没有体现出具体的预报成果,“台风发展有一些阶段,发展时间比较长,在大洋上形成胚胎,短则2至3天、长的要5天甚至7天发展成台风。要提前7天识别出热带低气压发生前的征兆,相信是可以做到的。”

据钱奇峰介绍,将神经网络的方法用在天气预报上并不新鲜,上世纪八十年代已经有一些应用,随着大数据和人工智能的发展,海量数据深度学习、复杂神经网络等逐步应用,人工智能预报天气已经成为很热门的一个话题。不光用在临近天气的预报,气候应用研究、台风海洋预报、海雾的预报等领域,都有人工智能技术的加持。

中央气象台天气预报技术研发室副主任代刊介绍,学界对AI在天气气候中的应用研究进展进行了分类整理,主要包括雷达质量控制、卫星数据反演及同化等气象数据处理;短时临近预报、概率预报、台风海洋天气预报、极端或灾害性天气预警、环境预报等天气业务;风暴环境特征分类、天气系统识别等天气气候分析;通信、生态环境、水资源和能源等领域的商业或行业应用。如何将人工智能技术应用到天气气候研究和应用领域,已成为热点方向。

弥补传统数值模式的不足

代刊告诉记者,传统天气预报不断发展更加复杂的动力数值模式,以求更准确和提前预报天气,人工智能预报天气则是以大数据驱动为主的预报技术,“实际上这两种方式是解决不同的问题,即不断发展的数值模式系统提供更高分辨率、更准确的预报结果,但由于其自身的缺陷以及天气预报的不确定性,仍然不能满足各种用户的不同需求,数据驱动方法为弥补这一差距提供了非常有用的工具。”代刊表示。

在我国,近年来随着天气业务现代化建设的推进,AI技术也得到逐步应用。据代刊介绍,在国家气象中心,研究人员已经将数据挖掘技术应用于海量集合预报数据的预报信息提取,如发展的最优百分位技术和台风路径最优选取集成方法,对提高预报准确率起到显著效果。

“我们正在探索将人工智能技术应用于网格预报业务,通过与清华大学合作,采用分布式深度学习框架、时空记忆深度循环网络算法,雷达外推预报准确率较之以往平均提升40%。”代刊说。

在公共气象服务中心,研究者联合天津大学共同研发了全国强对流服务产品加工系统。该系统运用图像识别和深度学习等新技术,能够快速和智能化地监测预警强对流天气,可以判断出未来30分钟内强对流天气发生和影响的区域,预测产品的区域空间分辨率为1公里,每6分钟滚动更新。

除了国家气象台,各省级气象台也都已开展相关研究,“人工智能这么火,我们肯定希望早把它用在我们的专业上,不用新技术就落伍了。”钱奇峰笑说。目前,广东省气象局利用阿里平台开展的基于深度学习的短临降水预报效果良好;北京市气象局也将机器学习方法应用于温度预报;福建省气象局基于机器学习的降水要素的客观订正方法已在多个省气象局得到业务推广应用。

本文地址:http://www.reviewcode.cn/jiagousheji/30491.html 转载请注明出处!

今日热点资讯