位置:编程技术网 > 产品设计 > 正文 >

人工智能与安防之情感计算

2019年02月11日 04:40来源:未知手机版

冷杉,太空堡垒国语版,i829三星手机,刘海砍樵,fl,qq闪字制作

人工智能期望计算机系统能够履行人类智慧能够完成的任务,这里的人类智慧包括智力和情感。智力计算已经在多个领域获得了规模应用,而情感计算却在很长一段时间内独立于AI领域之外。

人工智能期望计算机系统能够履行人类智慧能够完成的任务,这里的人类智慧包括智力和情感。智力计算已经在多个领域获得了规模应用,而情感计算却在很长一段时间内独立于AI领域之外。

早在1997年Rosalind Picard就提出了 情感计算 的理论,2014年被应用于俄罗斯冬奥会之后,情感识别技术更是受到了国际组织的高度重视,被视为继指纹、声纹、人脸之后的公共安全高级应用。

情感计算的原理与模型

情感计算研究的重点在于通过各种传感器采集由人的情感所引起的生理及行为特征信号,建立 情感模型 ,从而获得感知、识别和理解人类情感的能力,并进而做出针对性的智能、灵敏、友好的反应。情感计算可分为四个过程:情感信息采集、情感识别分析、情感理解认知、情感信息表达。

情感虽是一种内部的主观体验,但总伴随着某些表现形式,包括面部表情(面部肌肉变化形成的模式)、语音表情(言语的声调、节奏和速度等方面的变化)、姿态表情(身体其他部分的表情动作)、生理情感和文本情感等。

面部表情

面部表情是鉴别人类情感的主要标志。通过研究人员面部的微小表情变化,AI系统可以识别其面容背后的情感活动。例如区分真笑和假笑:人在真笑时面颊上升,眼周围的肌肉堆起;而人在假笑时仅有嘴唇的肌肉活动,下颚下垂。通过脸部不同运动单元的组合,可以在脸部形成复杂的表情变化,譬如幸福、愤怒、悲伤等。

语音表情=

语音是人际交往最直接的交流途径。语音表情是通过语音的高低、强弱、抑扬顿挫来表达说话人的情感。一句 你真行! ,既可以表示赞赏,也可能表示讽刺。语音中的情感特征往往通过语音韵律的变化表现出来,例如当人发怒时,讲话的速率可能变快、音量变大、音调变高等,也可以同时通过一些音素特征,例如共振峰、声道截面等表现出来。

姿态表情

姿态表情一般伴随着交互过程而发生变化,表达了潜在的情感信息。例如,一个手势的加强通常反映了一种强调的心态,而其身体某一部位不停地摆动则通常反映其情绪的紧张。人类姿态的变化使情感表述更加生动。相对于面部表情和语调表情,姿态表情会使情感表述更加生动,是当前情感计算的研究热点。

生理情感

生理表情是通过人类生理细微变化,观察多种情绪的特定波动变化的模式(如心电图、电皮肤活动等),识别人们思想情绪的变化。例如当人们感受到压力而紧张或有不良企图以致情绪亢奋时,身体交感神经就会启动相关必要的机能,例如心跳加速、血压上升、呼吸变快、体温增高,乃至于肌肉皮肤颤动等生理变化。

文本情感

文本情感分析是通过挖掘与分析文本中的观点、看法、情绪及好恶等主观信息,对文本中词、句和篇章的情感色彩做出判断。比如一个人说 桌子上有一层灰 ,这没有任何情感词,但实际上已经表达了他的不满。再比如, 从下单到收货不到24小时 表明他称赞快递速度很快。

情感状态的识别和理解,是赋予系统理解人类的情感,并做出合适预警的关键步骤。为了使计算机更好地完成情感识别任务,科学家已经对人类的情感状态进行了合理而清晰的分类。目前,在情感识别和理解的方法上运用了模式识别、人工智能、语音和图像技术的大量研究成果。例如,在情感语音的声学分析基础上,运用线性统计方法和神经网络模型,实现了基于语音的情感识别原型;通过对面部运动区域进行编码,采用HMM等模型,建立了面部情感特征的识别方法;通过对人姿态和运动的分析,探索肢体运动的情感类别等等。

情感计算的研究现状与成果

情感计算是一个高度综合化的技术领域。截至目前,有关研究已经在人脸表情、语音理解、姿态分析和多模态的情感识别方面获得了一定的进展。

本文地址:http://www.reviewcode.cn/chanpinsheji/30478.html 转载请注明出处!

今日热点资讯